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Abstract: We theoretically investigate the spectral and localization 
properties of two-dimensional (2D) deterministic aperiodic (DA) arrays of 
photonic nanopillars characterized by singular continuous (Thue-Morse 
sequence) and absolutely continuous (Rudin-Shapiro sequence) Fourier 
spectra. A rigorous and efficient numerical technique based on the 2D 
Generalized Multiparticle Mie Theory is used to study the formation of 
optical gaps and the confinement properties of eigenmodes supported by 
DA photonic lattices. In particular, we demonstrate the coexistence of 
optical modes with various degrees of localization (localized, extended and 
critical) and show that in-plane and out-of-plane optical energy confinement 
of extended critical modes can be optimally balanced.  These results make 
aperiodic photonic structures very attractive for the engineering of novel 
passive and active photonic devices, such as low-threshold microlasers, 
sensitive detectors and bio-chemical sensors. 
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1. Introduction  

An intense theoretical and experimental research effort has been recently devoted to the study 
of the optical transport, scattering and emission properties of quasi-periodic and deterministic 
aperiodic photonic structures in one and two dimensions. These efforts can unveil the 
connection between the spectral properties of aperiodic sequences and the complex optical 
behavior of the resulting structures, leading to novel design concepts for the control of optical 
fields in photonic devices. Quasi-crystalline two-dimensional photonic structures (PhQ), e.g. 
quasi-periodic Penrose photonic lattices, have already been intensively investigated. These 
studies led to the recent demonstrations of optical pseudo-bandgaps [1, 2], light localization 
[2-4], focusing [5, 6], spontaneous emission enhancement and lasing [7, 8]. Differently from 
conventional periodic photonic crystals (PhCs), quasi-periodic photonic structures lack 
translational invariance but possess a high degree of rotational symmetry, five-fold rotations 
and over six-fold rotations, which are forbidden in periodic structures. Accordingly, the 
optical modes supported by PhQ are “extended” modes characterized by a high degree of 
rotational symmetry [2]. It has also been shown that short-range interactions associated with 
point group rotational symmetries in photonic quasi-crystals play a major role in the 
mechanism of the bandgap formation, light localization and focusing [2, 3, 6].  

Unlike periodic photonic structures or PhQs, deterministic aperiodic (DA) photonic 
structures lack both translational and rotational symmetry but display remarkable self-
similarity (scale invariance symmetry) in their structural and spectral features. Such structures 
can be easily generated by arranging dielectric or metal scatterers in a 2D lattice constructed 
by following fractal inflation rules [9, 10]. Previous studies of one-dimensional (1D) DA 
structures have revealed their unusual light transport and localization properties. Light 
localization [11, 12], strong group velocity reduction at pseudo-bandgap frequencies [13], 
fractal scaling of band-gap regions with omnidirectional reflectance [14], and light emission 
enhancement at localized modes have been demonstrated [15]. Furthermore, attempts have 
been made to design photonic gaps and localized states in aperiodic structures using Fourier-
based inverse optimization algorithms [16]. However, the optical properties of DA structures 
still remain largely unexplored. In our recent studies of 2D DA lattices composed of noble-
metal nanoparticles we have demonstrated broadband plasmonic resonances spanning the 
entire visible spectrum due to the excitation of multiple photonic-plasmonic scattering 
resonances [17]. The formation of optical bandgaps in 2D DA photonic structures composed 
of either dielectric rods or airholes has also been recently demonstrated [18, 19]. Nevertheless, 
a general theory connecting the geometrical properties of the aperiodic lattices with their 
optical properties is still lacking, and represents the main challenge in the field of DA 
photonic structures. In this paper, we perform a systematic comparative analysis of the optical 
properties of two types of 2D deterministic aperiodic photonic structures: Thue-Morse and 
Rudin-Shapiro arrays of high-refractive-index dielectric rods embedded in a low-index host 
medium (air). In general, aperiodic systems are classified according to the spectral measures 
of their spatial Fourier transforms [9]. The two structures under study are characterized by 
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singular-continuous (Thue-Morse) and absolutely-continuous (Rudin-Shapiro) Fourier 
spectra, respectively [10, 17], and embody the most general manifestations of deterministic 
aperiodic systems.  

Periodic photonic structures based on arrays of dielectric nanorods, with and without 
structural defects, have been extensively studied theoretically [20]. Owing to recent advances 
in nanofabrication techniques, several types of nanorod PhCs have been successfully 
fabricated and characterized. These include GaAs/AlxOy sandwich-like structures [21] and 
silicon-on-insulator nanopillar structures [22]. Waveguiding along linear chains and arrays of 
nanopillars as well as coupling of nanopillar structures to conventional waveguides have also 
been demonstrated, both numerically and experimentally [21-23]. Furthermore, it has recently 
been realized that nanopillar-based structures offer a critical advantage for biosensing and 
optofluidic applications over more traditional PhC design schemes based on arrays of airholes 
in high-refractive-index membrane structures. In fact, not only the optical modes supported by 
nanorod-based PhCs feature higher sensitivity to the changes of the surrounding refractive 
index [24], but they can also be readily integrated on a planar optical chip which includes 
optofluidic channels for pumping liquids into the plane of the device [25]. In contrast, little is 
known on the photonic properties of DA arrays of dielectric nanorods. Recently, we have 
shown that the optical modes supported by DA nanorod-based structures are better suited for 
sensing applications than band-edge or defect-localized states in periodic PhCs [26]. In this 
paper, we will rigorously investigate the bandgap and mode localization properties of DA 
arrays of dielectric nanorods. 

2. Morphology of aperiodic structures and computational methodology  

The 2D deterministic aperiodic structures considered in this paper are generated by arranging 
identical circular dielectric cylinders according to simple deterministic algorithms based on 
the alternation of 1D aperiodic inflation maps along orthogonal directions [10, 17]. This 
approach uniquely specifies the positions of the dielectric cylinders (blue dots in Fig. 1) in the 
arrays once the minimum inter-particle separation has been chosen. As a result, the resulting 
DA photonic structures are long-range correlated, despite their lack of global translational 
invariance. Thue-Morse arrays (Fig. 1(a)) are generated by a 2D generalization of the 
aperiodic inflation: A→AB,  B→BA, where A and B stand for the presence or the absence of a 
dielectric cylinder or radius r in a unit cell of side length a, respectively [10, 17]. Thue-Morse 
arrays are characterized by singular-continuous Fourier transforms (Fig. 1(b)), and support 
optical modes that are neither extended nor exponentially localized. Such modes, dubbed 
critical modes, are field states with a rich self-similar structure, which can exhibit strong 
spatial fluctuations at multiple length scales [14, 18, 19, 27]. The inflation rule used to 
generate the Rudin-Shapiro arrays (Fig. 1(c)) can simply be obtained by the iteration of the 
two-letter inflation as follows: AAABAA → , AABAAB → , BBABBA → , BBBABB → . 
Rudin-Shapiro arrays are characterized by an absolutely continuous (flat) Fourier spectrum 
(Fig. 1(d)), which makes this DA structure akin to purely random structures or white noise 
stochastic processes. There is presently no complete agreement on the spectral and 
localization character of the Rudin-Shapiro eigenmodes. However, it has been recently 
realized that extended states can coexist with exponentially-localized ones, similar to the field 
states formed in random structures in the regime of Anderson localization [19, 26, 28-30]. In 
this paper, we accurately study the light scattering properties of DA structures in two spatial 
dimensions, and discuss the origin of their optical modes. 

In the 2D formulation of the electromagnetic scattering problem for 2D arrays, the 
polarizations of electromagnetic waves decouple, and two independent scalar problems need 
to be solved for transverse-electric (TE, electric field in the plane of the array) and transverse-
magnetic (TM, electric field normal to the array plane) waves. In the following sections, we 
will only consider the TM polarization case since rod-based photonic structures always favor 
the formation of TM bandgaps [1, 20]. In our numerical simulations, we use an efficient 
algorithm based on the rigorous solution of the 2D scattering and eigenvalue problems in the 
framework of the generalized multiparticle Mie theory. The technique makes use of Bessel-
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Fourier multipolar expansions of electromagnetic fields, and gives an essentially exact 
solution to the scattering problem, provided that the final matrix equation is truncated at a 
sufficiently high multipolar order [31-33].  

 

 
Fig. 1.  Real-space lattices of Thue-Morse (a) and Rudin-Shapiro (c) 2D photonic structures 
and their corresponding reciprocal space representations (lattice Fourier spectra) (b,d). 

 
To study the frequency response of DA photonic structures and to identify the spectral 

positions of photonic bandgaps, we calculate the radiation power spectrum of a line source 
embedded in the structure. The total power radiated from the source-array system is evaluated 
by integrating the output energy flux through a closed contour surrounding the structure [26, 
33, 34]. In our simulations, the line source is always placed in the center of the lattice. 
However, we notice that the frequency locations and spectral widths of the calculated 
bandgaps do not depend on the choice of the source coordinates. We normalize the total 
radiated power to the corresponding power emitted by a source in free space. In the case of 
infinite photonic structures, the source radiation at the frequencies within the photonic 
bandgap is completely suppressed. For finite-size photonic lattices, the photonic bandgaps are 
manifested as frequency regions with strongly suppressed radiated power. Outside of the 
bandgap regions, the values of normalized radiated power fluctuate around unity, and their 
abrupt (smooth) variations correspond to the excitation of high(low)-quality factor (Q) optical 
modes in the photonic structure.  

3. Bandgap formation and spectral properties of resonant modes  

We consider 2D finite-size photonic structures composed of N  parallel non-overlapping 
dielectric rods of radii r and permittivity 5.10=ε  arranged according to Thue-Morse and 
Rudin-Shapiro aperiodic sequences with the smallest center-to-center separation a 
( 5.00 << ar ). The formation of TM bandgaps in several types of nanorod-based PhQ [1-7] 
and DA structures [18, 19, 26] has already been demonstrated. As previously observed, the 
spectral positions of low-frequency bandgaps in nanorod-based PhQs largely depend on the 
resonant properties of the individual rods. As a result, they approximately coincide with the 
positions of bandgaps in periodic PhCs with matching geometrical and material parameters 
[1]. Here, we calculate the frequency spectra of the power radiated by a TM-polarized line 
source embedded in the periodic square-lattice, Thue-Morse and Rudin-Shapiro nanorod-
based photonic structures. The results are presented in Figs. 2(a)-(f) . The investigated 
photonic structures are composed of 100=N  (periodic), 128=N  (Thue-Morse) 120=N  
(Rudin-Shapiro) cylinders, respectively. Four types of arrays with progressively larger values 
of ar  ratios are considered: 2.0=ar  (black lines), 25.0=ar  (red lines),  3.0=ar  (blue 

lines), and 35.0=ar  (green lines). One photonic bandgap can be identified in the radiated 

power spectra of the structures with 2.0=ar  and 25.0=ar , while the spectra of the 

structures with 3.0=ar  and 35.0=ar  feature two bandgaps in the considered frequency 
range. The values of the dielectric filling fractions (the ratios of the surface area covered by 
the higher refractive-index dielectric to the total area of the photonic structure) of the 
aperiodic structures are much lower than corresponding values for the periodic PhC for all the 
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considered ar  ratios (e.g., %2.142.0 =perf , %8.62.0 =TMf , %4.62.0 =RSf ; %9.4035.0 =perf , 

%2035.0 =TMf ,  %7.1835.0 =RSf ). Nevertheless, it can be seen in Fig. 2 that the spectral positions 
of the photonic bandgaps are nearly the same for all the structures characterized by identical 

ar  values. This confirms that, similarly to the case of periodic and quasi-periodic PhCs, the 
bandgap formation mechanism in DA nanorod-based structures is governed by the Mie-
resonances of the individual nanorods. As shown Fig. 2, DA structures feature, in addition to 
band-edge states, a number of optical modes with resonant frequencies located within the 
photonic bandgaps. These localized optical modes originate from multiple scattering 
resonances in aperiodic environments with multiple scale correlations, as reflected by the self-
similar diffusive character of their reciprocal (Fourier) spectra (Fig. 1b,d) [9]. From Fig. 
2(c,d) and Fig. 2(e,f) we conclude that the number and spectral positions of resonant modes 
(peaks) depend on the dielectric filling fraction of the aperiodic lattices. In the DA lattices 
with large dielectric filling fractions, “shallow” modes with frequencies close to the lower-
frequency band-edge are formed in the first bandgap. When the dielectric filling fraction is 
decreased, the modes shift towards the center of the bandgap, and the number of states within 
the bandgap increases.  
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Fig. 2.  The radiation power spectra of a TM-polarized line source located in the center of (a,b) 
a periodic square lattice, (c,d) Thue-Morse lattice and (e,f) Rudin-Shapiro lattice of dielectric 
cylinders with NP=100, NTM=128, NRS =120, ε=10.5, r/a=0.2 (black lines), r/a=0.25 (red lines), 
r/a=0.3 (blue lines), and r/a=0.35 (green lines) in air. Spectral positions of the first bandgaps of 
infinite square-lattice periodic PhCs with matching parameters are indicated with vertical lines 
and horizontal bars in (a,b). 

 
It is well-known that localized states can also be formed in the bandgaps of periodic PhCs 

by introducing structural defects [35]. These localized states are classified as either donor or 
acceptor modes. Donor modes are pulled from the higher-frequency air (conduction) band by 
introducing extra dielectric material at the defect site. Acceptor modes are pushed into the 
optical gap from the lower-frequency dielectric (valence) band when dielectric material is 
removed from one or several unit cells [35, 36]. In general, the spatial electric field 
distributions for donor and acceptor modes differ substantially. The electric field vector of 
localized donor modes is prevalently confined in the high refractive index regions of the 
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structure, while localized acceptor fields are spatially confined in the regions of lower 
refractive index. We discovered that this behavior is substantially more complex for DA 
structures. This becomes evident when we realize that DA structures can equivalently be 
generated by the deterministic removal of cylinders at specified positions of an underlying 
periodic square-lattice. The lattice constant of the underlying periodic lattice defines the 
minimum nearest-neighbor distance in the resulting DA structure. This generation 
methodology helps clarifying the physical nature of critical optical modes in general DA 
structures. In fact, these deterministic removal processes, result, at each generation step, in the 
creation of inhomogeneously distributed sub-clusters of dielectric cylinders where interacting 
(coupled) filed states become localized. The complex electromagnetic interaction among these 
“construction-induced” defect states, which we call component modes, is responsible for the 
formation of critical states in DA structures.  
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Fig. 3. The evolution of optical component mode frequencies associated with the 
transformation of the periodic PhC into aperiodic structures by reducing the radii of the rods at 
the positions determined by the aperiodic sequences. Defect rods radii of  r/a=0.2 correspond 
to a square-lattice periodic PhC with NP=64, and r/a=0 correspond to the Thue-Morse (a) and 
Rudin-Shapiro (b) aperiodic photonic structures with NTM=NRS=32. The frequency ranges of 
the first TM bandgaps of the periodic and aperiodic lattices are shown as red and blue sidebars, 
respectively. 

  
As an example, Fig. 3 shows the formation of optical modes inside the first bandgap of 

small-size Thue-Morse and Rudin-Shapiro structures composed of 32 cylinders. Both these 
DA structures can be created by removing cylinders from a periodic 88×  square-lattice PhC. 
In Fig. 3, the radii of the rods located at the positions determined by the aperiodic sequences 
are kept constant, while the radii of all other rods are gradually reduced until they become 
zero. As we already mentioned, this operation is equivalent to the introduction of multiple 
structural defects, or component modes, in a periodic square lattice. It can be clearly seen that, 
as the defect rods radii are decreased, several component modes are pushed into the bandgap 
from below the dielectric band edge. The modes in Fig. 3(a) and Fig. 3(b) are labeled with 
letters, and their electric field distributions are shown in Fig. 4 and Fig. 5, respectively. We 
notice that all the modes formed inside the bandgaps of the Thue-Morse and Rudin-Shapiro 
structures can be classified as acceptor ones [35, 36]. In addition, we observe that the upper-
band-edge mode of the periodic PhC experiences a moderate frequency shift and is mapped 
into the band-edge mode of an aperiodic structure. On the other hand, the lower-band-edge 
mode shifts dramatically and maps into one of the acceptor modes. It is also evident from Fig. 
3 that the photonic bandgaps of the Thue-Morse and Rudin-Shapiro structures (shown as blue 
vertical bars in Fig. 3) are wider than the bandgap of the underlying periodic PhC (vertical red 
bars in Fig. 3). This is a result of their higher degree of structural disorder described by 
singular-continuous and absolutely continuous Fourier spectra, respectively. The gaps of the 
DA structures are also shifted towards lower frequencies, in perfect agreement with previous 
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observations of bandgap positions in 2D quasi-periodic and aperiodic structures [3, 18]. This 
behavior of the bandgap width and band-edge spectral position originates from long-range 
optical interactions and multiple-scattering processes occurring in aperiodic and quasi-
periodic photonic structures, which are characterized by dense Fourier spectra [3]. 

 

 
Fig. 4. Electric field patterns (|Ez|) of the band-edge and acceptor modes in the first TM 
bandgap of the Thue-Morse structure with NTM=32: (a) a/λ=0.264; (b) a/λ=0.276; (c) 
a/λ=0.341; (d) a/λ=0.384; (e) a/λ=0.417; (f) a/λ=0.468.  

 

 
Fig. 5. Electric field patterns (|Ez|) of the band-edge and acceptor modes in the first TM 
bandgap of the Rudin-Shapiro structure with NRS=32: (a) a/λ=0.255; (b) a/λ=0.278; (c) 
a/λ=0.307; (d) a/λ=0.308; (e) a/λ=0.370; (f) a/λ=0.405; (g) a/λ=0.445; (h) a/λ=0.461.  

 
We also notice that a similar picture for the evolution of the optical modes from the band-

edge region to the center of the bandgap has been observed when introducing a progressively 
larger degree of randomness in a periodic photonic structure [37]. However, differently from 
the case of random structures, the spectral positions of all the resonant peaks in DA structures 
are reproducible and deterministic, enabling a higher degree of control on their optical spectra 
(only limited by fabrication errors). In DA structures, the number of modes and their spectral 
characteristics can be carefully designed by the proper choice of the geometrical and material 
parameters of the lattice. Therefore, DA photonic structures bear a large potential for the 
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engineering of novel photonic components, such as aperiodic lasers with reproducible and 
controllable emission properties. 

We will now investigate how the spectral positions of the optical modes supported by DA 
photonic structures depend on the size of the structure. Infinite periodic square-lattice PhCs 
with the same parameters as the structures considered above show bandgaps for TM-polarized 
modes in the following frequency ranges: )428.0301.0( ÷=λa  for 2.0=ar ; 

)369.0271.0( ÷=λa  for 25.0=ar ; )318.0249.0( ÷=λa , )528.0443.0( ÷  for 3.0=ar ; 

and )272.0234.0( ÷=λa ; )465.0399.0( ÷  for 35.0=ar  (position of the first bandgap is 
marked with colored vertical lines and horizontal bars in Fig 2(a)) [38]. As shown in Fig. 2(a), 
the widths of the bandgaps of infinite-size and finite-size PhCs do not coincide. Such a shift of 
the band-edge mode frequencies with the change of the structure size has been previously 
observed in finite-size periodic and quasiperiodic photonic structures [34]. In periodic PhCs, 
the shift of the band-edge states is smooth, while PhQs display an abrupt and irregular 
evolution of the band-edge states as the lattice size is varied [34].  
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Fig. 6.  The radiation power spectra of a TM-polarized line source located in the center of (a) 
Thue-Morse and (b) Rudin-Shapiro lattice of dielectric cylinders (ε=10.5, r/a=0.2) in air. Three 
cluster sizes are considered for each aperiodic structure:  7a×7a, NTM= NRS =32 (black); 
15a×15a, NTM=128, NRS =120 (blue); and 31a×31a, NTM=NRS =512 (red). 

 
In Fig. 6, the radiation power spectra in the vicinity of the first TM bandgap of the Thue-

Morse and Rudin-Shapiro lattices are plotted for three different structure sizes: 30~1N , 

120~2N  and 500~3N . It can be seen that for both DA structures the increase of the 
structure size induces a damping of the radiated power for the frequencies inside the band gap. 
Furthermore, new states appear inside the bandgap when the structure size is progressively 
increased. The linewidths of these modes become narrower, which indicates the increase of 
the corresponding mode Q-factors. However, two different scenarios for the emergence of 
new modes within the bandgaps and at the band-edges in Thue-Morse and Rudin-Shapiro 
structures can be identified. In the optical spectrum of the Thue-Morse structure, new 
resonances appear both at the band-edges and inside the bandgap (Fig. 6(a)). In addition, by 
increasing the structure size the band-edge states are shifted toward the bandgap region 
following an irregular pattern similar to the scenario observed in quasiperiodic photonic 
structures [34]. However, the photonic bandgap regions remain always pronounced in 2D 
Thue-Morse structures of large size (see also [18]). The formation of new modes inside the 
bandgap occurs due to the splitting of coupled modes originating from repeated local 
structural elements when increasing the size of Thue-Morse lattices. The resonant frequencies 
of the new modes are distributed around the spectral positions of the modes supported by 
smaller-sized structures, and are responsible for the formation of several adjacent bandgaps 
separated by distinct narrow transmission regions. A similar bandgap scaling, which shows a 
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remarkable self-similar (fractal) character inherited from the fractality of the construction rule, 
has previously been demonstrated in 1D Thue-Morse aperiodic structures [14].  

On the contrary, in the case of Rudin-Shapiro structures (Fig. 6(b)), a size increase results 
in the formation of new modes. These modes have resonant frequencies at different positions 
inside the bandgap, reflecting the appearance of novel local structural patterns, which spring 
at each scaling generation in aperiodic environments with flat spatial (Fourier) spectra. The 
frequency positions of the sharp resonant modes in Rudin-Shapiro structures are uniquely 
defined by the structure design, unlike the positions of the optical modes formed in random 
structures. In the limit of an infinite structure, the optical mode spectrum of Rudin-Shapiro 
structures collapses into a dense set of high-Q states, and no well-defined bandgap regions can 
be identified. The sharp resonant peaks observed in the spectra of Fig. 6(b) are well isolated in 
frequency, reflecting the high Q-factors of the corresponding modes and the rapid frequency 
variations of the optical density of states. Note that large fluctuations of the density of states in 
photonic structures, even in the absence of a bandgap region, provide a “colored vacuum” for 
a variety of quantum optical experiments [39]. The absence of a bandgap has also been 
previously observed in traditional periodic PhC with large degree of structural disorder [37]. 
However, for periodic structures, an increase in structural disorder is accompanied by a sharp 
decrease in the Q-factors of localized modes. 

4. Localization properties of optical modes 

Two-dimensional DA photonic structures provide novel platforms for realizing and 
investigating various regimes of light localization on chip-size optical devices. In order to 
reveal the localization properties of the optical modes supported by DA photonic structures, 
we have investigated the scaling behavior of their near-field distributions with increasing 
structure size. As we already pointed out, DA structures can support both extended and non-
extended (quasi-localized or critical) optical modes. Unlike defect modes in periodic PhCs, 
where light localization is induced by a local symmetry perturbation of the underlying lattice, 
critically localized modes are formed in DA lattices without introducing structural defects. 
Owing to the presence of many non-equivalent local arrangements of cylinders (sub-clusters) 
in DA structures, the properties of critically-localized eigenstates are more complex than those 
of defect modes in periodic PhCs, and may potentially offer a higher degree of design and 
tuning flexibility [40].  

In Figs. 7 and 8, we plot the near-field intensity distributions of several optical modes 
supported by large ( 512=N ) Thue-Morse and Rudin-Shapiro photonic structures, 
respectively. The figures reveal great variability in localization properties of different critical 
modes, depending on the Fourier properties of the DA lattice and the modes spectral 
positions. This result is in agreement with previous studies on critical eigenstates in 1D 
quasiperiodic electronic and photonic structures [40-42]. Based on our systematically 
computational analysis, several general conclusions on the localization character of critical 
optical modes in DA structures can be made. First, the field distributions of the eigenstates at 
the edges of the photonic bandgap of  Thue-Morse structures show self-similar spatial patterns 
(as shown in Fig. 7(a) and Fig. 7(d)) and resemble cluster-periodic states with strong local 
field amplitude variations (see also similar data for the band-edge states in 1D Thue-Morse 
structures [42]). These band-edge modes are less localized than the modes with frequencies 
located in the narrow transmission regions inside the bandgap of Thue-Morse structures. 
Accordingly, they have lower quality factors (compare Fig. 7(a,d) and Fig. 7(b,c)). The 
scaling of the band-edge states with the increase of the size of a Thue-Morse structure is 
similar to the behavior of the corresponding modes in quasiperiodic photonic lattices [34, 43]. 
This behavior is induced by the optical coupling between resonances localized on the highly-
symmetric local structural patterns (local point-symmetry) which repeat throughout the 
photonic structure at each scaling generation (e.g., note the evolution of the spatial 
localization of the mode shown in Fig. 4(a) into that of the mode of a large Thue-Morse 
structure presented in Fig. 7(d)). 
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Fig. 7.  Electric field patterns (|Ez|) of selected critical modes in and around the first TM 
bandgap of the Thue-Morse structure with NTM=512: (a) a/λ=0.452, Q=8.91×102; (b) 
a/λ=0.417, Q=1.694×104; (c) a/λ=0.339, Q=3.363×103; (d) a/λ=0.262, Q=8.6×102.  

 
Fig. 8.  Electric field patterns (|Ez|) of select critical modes in and around the first TM bandgap 
of the Rudin-Shapiro structure with NRS=512: (a) a/λ=0.397, Q=4.107×104; (b) a/λ=0.361, 
Q=3.002×103; (c) a/λ=0.4, Q=3.153×104; (d) a/λ=0.279, Q=1.212×103. 

 
This situation is substantially different in the case of Rudin-Shapiro structures, as shown in 

Fig. 8. By comparing Figs. 7 and 8, we notice that the critical modes supported by Rudin-
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Shapiro structures are generally more localized than those in the Thue-Morse structures, 
reflecting the higher degree of structural disorder described by an absolutely continuous 
Fourier spectrum (Fig. 1(d)). The Rudin-Shapiro eigenstates are also characterized by higher 
values of Q-factors (narrower mode linewidths). This localization behavior can be explained 
by the large number of non-equivalent, weakly coupled local configurations (sub-clusters) that 
exist in the Rudin-Shapiro lattice. As a result, different eigenstates are localized (or rather 
quasi-localized) in different areas of the structure. Consistently, an increase in the structure 
size does not have a significant effect on the localization properties of the Rudin-Shapiro 
modes. For example, the mode pattern presented in Fig. 8(d) is essentially the same as that of 
the mode supported by the smallest-size Rudin-Shapiro structure (see Fig. 5(b)). The resonant 
frequency of this mode also experiences a negligible shift with the increase of the structure 
size. Similarly, the critical mode pattern shown in Fig. 8(b) is already supported by the Rudin-
Shapiro structure of the intermediate size ( 120=N ). Our simulations show that an increase in 
the structure size up to 512=N  only weakly affects the field localization character of the 
optical mode, and results in a small increase of the mode Q-factor (from Q=1.803×103 to 
Q=3.002×103) without appreciable shift in the resonant mode frequency. These scaling 
characteristics of the most localized modes in Rudin-Shapiro structures are analogous to the 
behavior of exponentially-localized Anderson modes in randomly scattering media [44]. 

 

 
Fig. 9.  The electric field profiles (|Ez|) of (a) a monopole mode localized in a point defect 
created in a periodic PhC by reducing the permittivity of a single rod (a/λ=0.2, εrod=12, εdef=6, 
a/λ=0.304, Q=2.618×103); (c) the same mode, which is delocalized in the plane by reducing the 
permittivity of the central rod and four neighboring rods (a/λ=0.2, εrod=12, εdef=6, a/λ=0.345, 
Q=2.283×103); (e) a monopole mode localized in the defect formed by removing the central 
rod (a/λ=0.2, εrod=10.5, εdef=1, a/λ=0.384, Q=5.104×104); and (g) an extended band-edge mode 
in a defect-free periodic PhC (a/λ=0.2, εrod=10.5, a/λ=0.434, Q=4.51×102). The corresponding 
2D Fourier transform spectra of the modes electric field distributions (b,d,f,h). The areas inside 
the white circles correspond to the leaky regions. 

 
We notice that our discussion of the localization properties of critical modes in DA 

photonic structures already suggests a novel approach to suppress vertical radiation losses in 
three-dimensional (3D) aperiodic structures made of finite-length nanorods [20]. However, in 
order to better appreciate this important implication, we will first review a general approach 
(momentum space analysis) for the discussion of the radiation loss balance in photonic 
structures. It is well known that a monopole acceptor mode that can be formed in a periodic 
PhC by removing one of the lattice rods is characterized by a very high in-plane optical 
confinement (high in-plane Q-factor ||Q ) and a very weak out-of-plane confinement (low out-

of-plane radiative Q-factor RQ ) [20]. As a result, the overall mode Q-factor 
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( RQQQ 111 || += ) is severely limited by the vertical field leakage. One of the possible ways 

to reduce these out-of-plane losses is through the delocalization of the in-plane mode field 
distribution [20, 45-48]. It is not possible to quantitatively compare the overall quality factors 
of the modes with various degrees of in-plane localization supported by periodic and aperiodic 
3D photonic structures in the frame of the 2D approach used in this study. However, for a 
qualitative comparison of the vertical confinement properties, we can rely on the momentum-
(k)space analysis. This approach is based on the decomposition of the mode electric field into 
a set of plane-wave components with various k-vectors obtained by performing a spatial 2D 
Fourier transformation of the in-plane mode pattern [45-48]. The plane waves that have the 
values of the in-plane components of the k-vector falling within a circle of diameter λπ2  
(where λ  is the light wavelength in air) will leak out of the photonic structure along the 
vertical direction. We refer to these spatial frequency components as the “leaky components”. 
According to this approach, the localization character of different modes can be compared by 
looking at the amount of the Fourier components in the leaky region. Several types of the 
high-Q defect-mode cavity designs have already been proposed using this method [45-47]. 

 

 
Fig. 10.  2D Fourier transform spectra of the electric field distributions of the critical modes 
supported by the Thue-Morse structure shown in Fig. 7 (a-d), respectively. 

 

 
Fig. 11.  2D Fourier transform spectra of the electric field distributions of the critical and 
localized modes supported by the Rudin-Shapiro structure shown in Fig. 8 (a-d), respectively. 

 
We now apply this method to compare the vertical field confinement properties of several 

types of modes supported by periodic photonic lattices with and without defects. The first 
structures to be considered are two defect-mode microcavities formed in a periodic square-
lattice PhC by reducing the dielectric constant of either a single rod (Fig. 9(a)) or five 
neighboring rods (Fig. 9(c)). The Fourier transforms of the two modal field distributions are 
presented in Fig. 9(b) and Fig. 9(d), respectively. It can be seen that the Fourier spectrum of 
the more delocalized mode has noticeably smaller components within the leaky region, 
indicating reduced vertical radiation losses. Indeed, 3D numerical simulations of the out-of-
plane radiative Q-factors of these two modes confirm that the five-rod defect mode has an 
order of magnitude larger RQ  than the single-rod defect one (see [20], chapter 8, Fig. 13). At 
the same time, our simulations show that the in-plane Q-factor of the delocalized mode is 
reduced only slightly (Fig. 9). In general, strong localization of the mode field in the plane 
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results in the broad distribution of its k-vector components in the reciprocal space, and thus in 
larger field leakage in the vertical direction [20]. Clearly, from this point of view, the two 
extreme cases are a strongly localized point-defect mode (Fig. 9(e)) and a completely 
delocalized band-edge state (Fig. 9(g)). Consistently, it is well known that the extended band-
edge modes have very small out-of-plane radiative losses (see Fig. 9(h)); however, their 
overall Q-factors are severely limited by the lateral field leakage. In contrast, the strong in-
plane localization character of the point-defect mode yields a broad distribution in the 
momentum space (Fig. 9(f)), which lowers the out-of-plane Q factors, and thus the overall 
radiative Q-factor.  

Based on this preliminary discussion, it is very interesting to investigate now the 
confinement properties of DA structures, which could offer a novel path to an optimum 
balance of the radiative losses of confined field states. The momentum space distributions of 
several critical modes supported by the Thue-Morse and Rudin-Shapiro structures with the in-
plane field patterns shown in Figs. 7 and 8 are plotted in Figs. 10 and 11, respectively.  
Comparing the plots in Figs. 10 and 11 with those in Fig. 9(f) and Fig. 9(h), we can see that 
the Fourier transform spectra of the critical mode fields show less leaky components than a 
localized point-defect mode, yet more than an extended band-edge mode (note that the critical 
modes can have high in-plane Q-factors, comparable with the Q-factor of the point-defect 
localized mode). This observation confirms the prediction that the delocalized nature of the 
critical modes in aperiodic photonic structures balances the in-plane and out-of-plane leakage 
of the modal energy. Note that a similar self-optimization of the light confinement has also 
been observed in PhCs with structural disorder [48]. Such balancing of horizontal and vertical 
light confinement in aperiodic structures is expected to result in the increase of the overall 
critical mode Q-factors, and thus in the reduction of the lasing threshold or in an increase of 
the spectral resolution of optical sensors based on the excitation of critical modes. Although 
the critical modes delocalization translates into their larger modal volumes, this is not a 
disadvantage for some important applications such as e.g., refractive index sensing. In fact, as 
we have recently demonstrated, the extended nature of critical modes can result in enhanced 
sensitivity to ambient refractive index variations and thus motivates the development of novel 
label-free optical biosensors based on DA photonic structures [26]. 

5. Conclusions 

We performed a systematic theoretical study of the spectral and light localization properties of 
two general types of 2D deterministic aperiodic photonic structures. We discussed the 
formation of photonic bandgaps in their frequency spectra, and the origin of critically 
localized optical states. We revealed the differences in the localization and scaling behavior of 
critical modes in aperiodic lattices with different degrees of spatial correlations, and we have 
shown that critical modes in DA structures naturally balances in-plane and out-of-plane 
optical confinement. These results motivate the fabrication of  resonant photonic structures 
with high-Q modes in deterministic aperiodic photonic structures. We expect that the design 
of deterministic aperiodic optical structures with optimally-balanced high-Q field states and 
controllable localization properties can have a significant impact on the engineering and 
fabrication of active devices such as low-threshold, multi-frequency light-emitting devices 
and optical sensors.  
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